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AN ATLAS OF REGULAR THIN GEOMETRIES 
FOR SMALL GROUPS 

DIMITRI LEEMANS 

ABSTRACT. For some small groups, we give, up to isomorphism, an exhaustive 
list of all residually connected thin geometries on which these groups act regu- 
larly. We then show the utility of such an atlas by proving several results about 
smallest groups acting on a given diagram. The results have been obtained 
using a series of MAGMA programs. 

1. INTRODUCTION 

Several years ago, a systematic investigation of group-geometry pairs satisfying 
a set of axioms started in Brussels (see [7, 9, 8, 18, 19, 20, 22, 23, 27]). This 
experimental work gave rise to several theoretical results (see [6, 5, 10, 12, 14, 15, 
25]). Some of these publications are the results of a more ambitious project- 
that is, to classify all geometries satisfying a set of axioms for an infinite family of 
groups. Families that are currently under investigation are the symmetric groups 
and the Suzuki simple groups. The dihedral groups have been studied in [24]. While 
working on the classification for the Suzuki groups, we found lots of thin geometries 
arising. We already noticed during the experimental work cited above that if thin 
geometries appear for a given group, there are generally lots of them. This leads 
us to classify all thin and residually connected geometries on which a group G acts 
flag-transitively, for several small groups. 

This paper is organized as follows. In Section 2, we give the basic definitions 
and notation. In Section 3, we give, for Alt(5), PSL(2,7), Alt(6), PSL(2,8), 
PSL(2, 11), and M1l, an exhaustive list of all their thin, residually connected, and 
flag-transitive geometries. The group Sz(8) has already been studied in [26]. In 
Section 4, we do the same for some non-simple groups, namely Alt(4), Alt(4) x 2, 
Sym(4), Alt(5) x 2, Sym(5), Sym(5) x 2, PGL(2,7), and M1o. In'Section 5, 
we give some theoretical results that were conjectured by looking at the lists of 
geometries obtained in the previous sections. This section shows the interest of 
building such an atlas. In Section 6, we show the connection between some of our 
thin geometries and reflexive maps described in [17]. Finally in Section 7, we talk 
about Petrie polygons, and we give examples of polyhedra for which the Petrial is 
not a polyhedron anymore. 
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2. DEFINITIONS AND NOTATION 

The basic concepts about geometries constructed from a group and some of its 
subgroups are due to Tits [29] (see also [41, chapter 3). 

Let G be a group together with a finite family of subgroups (Gi)iEI. We define 
the pre-geometryP = F(G, (Gi)iEl) as follows. The set X of elements of P consists 
of all cosets gG2, g E G, i E I. We define an incidence relation * on X by 

giGi * g2Gj iff g1G n g2Gj is non-empty in G. 

The type function t on P is defined by t(gGi) = i. The type of a subset Y of X is 
the set t(Y); its rank is the cardinality of t(Y) and we call I I the rank of F. The 
subgroups (Gi)iEI are called the maximal parabolic subgroups. The Borel subgroup 
of the pre-geometry is the subgroup B = niEI Gi. A flag is a set of pairwise incident 
elements of X, and a chamber of P is a flag of type I. An element of type i is also 
called an i-element. 

The group G acts on P as an automorphism group, by left translation, preserving 
the type of each element. 

This action involves a kernel K which is the largest normal subgroup of G con- 
tained in every Gi, i E I. If the kernel is the identity, we say that G acts faithfully 
on 1. As in [18], we call F a geometry provided that every flag of P is contained in 
some chamber, and we call P flag-transitive (FT) provided that G acts transitively 
on all chambers of F, hence also on all flags of any type J, where J is a subset of I. 

If G acts faithfully and flag-transitively on F, we say that G acts regularly on P. 
Assuming that P is a flag-transitive geometry and that F is a flag of F, the residue 
of F is the pre-geometry 

r'F = F n Gj, (Gin (n Gj)) ) 

jEt(F) jEt(F) iEI\t(F) 

and we readily see that FF is a flag-transitive geometry. 
We call P firm (F) (resp. thick, thin) provided that every flag of rank I I -1 is 

contained in at least two (resp. three, exactly two) chambers. We call P residually 
connected (RC) provided that the incidence graph of each residue of rank > 2 is a 
connected graph. If P is a geometry of rank 2 with I = {0, 1} such that each of 
its 0-elements is incident with each of its 1-elements, then we call P a generalized 
digon. 

Following [2] and [3], the diagram of a firm, RC, FT geometry P is a graph 
together with additional structure, whose vertices are the elements of I, which is 
further described as follows. To each vertex i E I, we attach the order si which is 
I PF I-1, where F is any flag of type I\{i}, the number ni of varieties of type i, 
which is the index of Gi in G, and the subgroup Gi. Elements i, j of I are not joined 
by an edge of the diagram provided that a residue PF of type {i, j} is a generalized 
digon. Otherwise, i and j are joined by an edge endowed with three positive integers 



AN ATLAS OF REGULAR THIN GEOMETRIES FOR SMALL GROUPS 1633 

dij, gij, dji where gij (the gonality) is equal to half the girth of the incidence graph 
of a residue FF of type {i, j} and dij (resp. dji), the i-diameter (resp. j-diameter) 
is the greatest distance from some fixed i-element (resp. j-element) to any other 
element in the incidence graph of FFI 

On a picture of the diagram, this structure will often be depicted as follows: 

di3 gij dji 
3 t 

Si s 

ci n 

Gi Gj 

If g-j = dij = dji = n, then FF is called a generalized n-gon, and on a picture, 
we do not write dij and dj3. 

The ordered pairs (1, G) and (', G) are isomorphic (resp. conjugate) if there 
exists an automorphism (resp. inner automorphism) of G mapping F onto r. The 
group Cor(r, G) (resp. Aut(r, G)) is the group of automorphisms (resp. type- 
preserving automorphisms) of the pair (F,G). 

As to notation for groups, we follow the conventions of the Atlas [16] up to slight 
variations. The symbol ":" stands for split extensions, the "hat" symbol "^" stands 
for non-split extensions and the symbol x stands for direct products. Sometimes 
we write A5 (resp. S5) instead of Alt(5) (resp. Sym(5)). 

The following theorem, due to J. Tits, shows that if a geometry F(G; (GC) El) 

has a non-trivial kernel K, then this geometry already appeared in G/K. 

Theorem 1 ([29]). Let F(G; (G )jEI) be a geometry. If K is the kernel of the 
action of G on F, then F(G; (Gi) jEI) - F(G/K; (Gi/K)iEI). 

This is the reason why we just construct geometries on which the group acts 
faithfully. 

In this Atlas, we look only at geometries F that are thin and residually connected, 
and on which the group G acts flag-transitively and faithfully (and hence regularly). 
The following lemma shows that we then may assume the Borel subgroup of our 
geometries to be the identity. 

Lemma 1. Let F(G; (Gj)iEI) be a thin geometry on which the group G'acts faith- 
fully. Then B =iEI C= 1. 

Proof. Since F is thin, the groups Gj = jEJ Gj where J is any subset of I of 
cardinality I I -1, contain B as a subgroup of index 2. Hence B is a normal 
subgroup of all these groups. Now, the subgroups Gj generate G, and thus B must 
also be a normal subgroup of G. This means B is a kernel. Then in order to have 
a faithful action of G on F, we must have B = 1. D 

3. SIMPLE GROUPS 

The following tables are read as follows. The first column gives a number to 
each geometry, and the number in parenthesis is the number of conjugacy classes 
of geometries that are fused under the action of the automorphism group of the 
group. The columns labelled i - j give the parameters to put on the edge i - j of the 
diagram. The column Cor(F, G) gives the correlation group. When the diagram 
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tells us that Cor(F, G) = Aut(F, G), we write nothing in this column. We do not 
mention the automorphism groups, because Aut(F, G) = G for every thin geometry. 
The column Go, G, C2, ... , Gn-I gives the maximal parabolic subgroups Go, GI, 
G2, . .. v Gn_l- 

3.1. Alt (5). 

Nr. 1-2 1-3 2-3 Corr(IF, G) 
1(2)1 2 3 5 
2 (1) 2 5 5 Sym(5) 
3 (2) 3 3 5 Alt(5)x2 
4 (2) 3 5 5 Alt(5)x2 

3.2. PSL(2,7). 

Nr. 1-2 1-3 2-3 Cor(IF, G) 
1 (1) 3 3 4 PGL(2,7) 
2 (1) 3 4 4 PGL(2,7) 

* 3 (1) 4 4 4 PSL(2,7): Sym(3) 

Nr. 1-2 1-3 1-4 2-3 2-4 3-4 Cor(F, G) Go,G1,G2,G3 
4 (1) 3 4 2 2 3 3 PGL(2,7) S4, S4, S4, S4 

5 (1) 3 2 4 4 2 3 PGL(2,7)x2 S4, S4, S4, S4 

3.3. Alt(6) = PSL(2,9). 

Nr. 1-2 1-3 2-3 Cor((r, G) 
1 (2) 3 3 4 PGL(2,9) 
2 (2) 3 3 5 PGL(2,9) 

3-4 (4) 3 4 5 Alt(6) 
5 (2) 3 5 5 Sym(6) 
6 (2) 4 4 5 PGL(2,9) 
7 (2) 4 5 5 PGL(2,9) 

3.4. PSL(2,8). 
Nr. 1-2 1-3 2-3 Cor(IF, G) 

1 (3) 2 3 7 

2(3) 2 3 9 
3 (3) 2 7 7 PSL(2,8) 

4-6 (3) 2 7 9 
7 (3) 2 9 9 PSL(2,8) 
8 (3) 3 3 1 7 PSL(2,8)x2 2 
9 (3) 3 3 9 PSL(2,8)x2 
10 (3) 3 7 7 PSL(2,8) 
11 (3) 3 7 7 PSL(2,8)x2 2 

12-13 (3) 3 7 9 
14 (3) 3 9 9 PSL(2,8)x2 2 
15 (3) 7 7 7 PSL(2,8)x2 
16 (3) 7 7 7 PSL(2,8)xSym(3) 

17-18 (3) 7 7 9 PSL(2,8) 
19 (3) 7 7 9 PSL(2,8)x2 

20-21 (3) 7 9 9 PSL(2,8) 
22-23 (3) 7 9 9 PSL(2,8)x2 2 

24 (3) 9 9 9 PSL(2,8)xSym(3) 
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3.5. PSL(2,11). 

Nr. 1-2 1-3 2-3 Cor(IF, G) 
1 (1) 2 5 5 PGL(2,11) 
2 (2) 2 5 6 
3 (1) 2 6 6 PGL(2,11) 
4 (1) 3 3 5 ? PGL(2,11) 

5-6 (1) 3 3 6 PGL(2,11) 
7 (2) 3 5 5 PSL(2,11)x2 

8-9 (2) 3 5 6 _____ 

10 (2) 3 6 6 PSL(2,11)x2 
11 (2) 5 5 5 PSL(2,11)x2 

12-13 (1) 5 5 6 PGL(2,11) 
14-15 (2) 5 5 6 PSL(2,11) 

16 (1) 5 6 6 PGL(2,11) 
17 (2) 5 6 6 PSL(2,11)x2 

Nr. 1-2 1-3 1-4 2-3 2-4 3-4 Cor(IF,G) C) GoG1G2,G3 
18 (2) 2 3 3 2 5 5 PSL(2,11) A5, A5, A5, D12 
19 (2) 2 3 3 2 5 5 PSL(2,11)x2 A5, A5, A5, D12 
20 (1) 2 2 3 3 5 2 PGL(2,11) A5, A5, D12, D12 
21 (1) 5 5 3 3 5 5 PSL(2,11): D8 A5, A5, A5, A5 

3.6. M 1. 
Nr. 1-2 1-3 2-3 Cor(F, G) 
1 3 4 5 
2 3 4 6 

3-5 3 5 6 
6-9 3 6 6 m 
10 4 4 5 m 
11 4 4 6 m 
12 4 5 5 m 

13-19 4 5 6 
20-21 4 6 6 m 
22-26 5 6 6 m 

27 6 6 6 ml 1 

3 

a , 

4 

The next table is read as follows. The first column gives a number to each geom- 
etry. There is no number in parentheses anymore, because Aut(Mll) M M11 and 
thus M1I cannot fuse any of its conjugacy classes of geometries. The next columns, 
labelled a, b, c, and d, give the parameters to put on the diagram given above, 
where there are also labels a, b, c, and d. The column labelled Cor(F, G) gives 
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the correlation group and the column Go, GI, G2, G3 gives the maximal parabolic 
subgroups of the geometry. The first one corresponds to the node labelled "1" on 
the diagram above, etc. 

Nr. a b c d Cor(I, G) Go,G,,G2,G3 
28 3 3 3 5 PSL(2, 11), D12, A5, S4 

29 3 3 3 6 P?L(2, 11), D12, S3 x S3, S4 

30 3 5 3 6 PSL(2, 11), D12, S3 x S3, A5 
31 4 3 3 4 A6, D12, 3d: D8, S4 

32 4 3 3 5 A6, D12, S5, S4 

33 4 3 3 6 PSL(2, 11), D12, 32: D8, S4 

34 4 3 3 6 PSL(2, 11), D12, S5, S4 

35 4 4 3 5 A6, D12, S5, 32: D8 

36 4 6 3 6 M11 PSL(2, 11), D12, 32: D8, S5 
37 5 3 3 4 GL(2,3), D12, S5, A5 
38 5 3 3 6 GL(2,3), D12, PSL(2, 11), A5 
39 5 5 3 6 PSL(2, 11), D12, S5, A5 
40 6 3 3 6 PSL(2, 11), D12, S5, S3 x S3 

41 6 4 3 4 mlh1 S5, D12, 32: D8, S5 

42 6 4 3 5 A6, D12, S5, 32: D8 

d 4 c 

Nr. a b c d Cor(P, G) Go,G1,G2,G3 
43 3 3 5 6 A5, S5, S3 x S3, S4 

44 3 3 5 6 A5, PSL(2, 11), S3 x S3, S4 

45 3 4 4 5 32: D8, S5, A5, S4 

46 3 4 4 6 3 : D8, S5, S3 x S3, S4 

47 3 4 6 6 32 : D8, PSL(2, 11), S3 X S3, S4 

48 3 4 6 5 32: D8, PSL(2, 11), A5, S4 

49 3 5 4 6 S5, S5, S3 x S3, A5 

' b 

d c 
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4. OTHER GROUPS 

4.1. Alt(4). There is no thin, residually connected geometry on which Alt(4) acts 
flag-transitively. 

4.2. Alt(4) x2. There is no thin, residually connected geometry on which Alt(4) x 
2 acts flag-transitively. 

Nr. a b c d e Cor(P, G) Go,G,,G2,G3 
50 3 3 3 5 6 A5, PSL(2, 11), XS3XS3,S4 

51 3 3 4 3 5 S4, PSL(2, 11), A5, GL(2,3) 

52 3 3 4 3 6 S4, PSL(2, 11), S3 x S3, GL(2, 3) 

53 3 3 4 4 4 32: D8, S5, S4, GL(2,3) 
54 3 3 4 4 5 32: D8, A6, A5, GL(2,3) 

55 3 3 4 6 3 S4, PSL(2, 11), 32:D8, GL(2, 3) 

56 3 3 5 3 6 A5, PSL(2, 11), S3 x S3, GL(2, 3) 

57 3 3 6 4 5 32: D8, A6, A5, GL(2,3) 

58 3 3 6 5 5 S5, A6, A5, GL(2,3) 

59 3 3 6 6 4 PSL(2, 11), S5, S4, GL(2,3) 

60 3 3 6 6 6 S5, PSL(2, 11), S3 x S3, GL(2,3) 

61 3 4 4 6 4 32: D8, S5, 32: D8, S5 

62 3 4 6 3 5 S3 x S3, A5, S5, S5 

63 3 4 6 4 6 M11x2 3 : D8, S5,3 :D8, S5 

64 4 3 3 3 5 S4, A6, A5, GL(2,3) 

65 4 3 4 3 5 S4, A6, A5, 32: D8 
66 4 3 6 4 5 PSL(2, 11), S4, S3 x S3, S5 

67 5 3 3 6 3 S3 x S3, PSL(2, 11), S4, S3 x S3 

68 5 3 4 4 4 32: D8, S5, S4, A6 

69 5 3 5 6 3 S5, PSL(2, 11), S4, A5 
70 5 4 4 4 6 A6, S5, 32: D8, 32: Ds 
71 6 3 4 3 6 S4, PSL(2, 11), S3 x S3, S5 

72 6 3 5 5 6 A5, S5, S3 x S3, PSL(2, 11) 

dc 

3 

Nr. a b c d e f Cor(L, G) Go,Gi,G2,G3 
73 3 3 5 6 3 6 M1i x 2 PSL(2, 11), GL(2, 3), GL(2, 3), A5 

74 3 3 4 3 5 4 Mil 3 : D8, A5, PSL(2, 11), GL(2,3) 

75 3 3 4 4 3 5 M11 x 2 S5, GL(2,3), A5, GL(2,3) 
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4.3. Sym(4). 

Nr. 1-2 1-3 2-3 Cor(F, G) 
1(1) 2 3 3 Sym(4) x 2 
2 (1) 2 3 4 
3 (1) 3 3 3 Sym(4) x Sym(3) 

4.4. Alt(5) x2. 

Nr. 1-2 1-3 2-3 Cor(F, G) 
1 (2) 2 3 5 

2-3 (2) 2 3 10 
4 (1) 2 5 5 Sym(5) x2 

5-6 (2) 2 5 6 _ 

7-8 (2) 2 5 10 
9 (2) 3 3 5 Alt(5) x22 
10 (2) 3 5 5 Alt(5) x22 
11 (1) 3 5 5 Sym(5) x2 
12 (2) 5 5 5 Alt(5) x 2 x Sym(3) 

Nr. 1-2 1-3 1-4 2-3 2-4 3-4 Cor(F, G) Go0G1,G2,G3 
13 (2) 2 2 2 2 3 5 _ A5, D20, D12, 23 
14 (1) 2 2 2 2 5 5 Sym(5)x2 A5, D20, D20, 23 
15 (2) 2 2 2 3 3 5 Alt(5)x22 A5, D20, D12, D12 
16 (2) 2 2 2 3 5 5 Alt(5)x2 A5, D20, D20, D12 

4.5. Sym(5). 

Nr. 1-2 1-3 2-3 Cor(F, G) 
1(1) 2 4 5 
2(1) 2 4 6 
3 (1) 2 5 6 
4 (1) 2 6 6 Sym(5)x2 2 
5 (1) 3 4 4 Sym(5)x2 2 

6-7 (1) 3 4 6 
8 (1) 4 4 5 Symn(5)x2 
9(1) 4 5 6 
10 (1) 5 6 6 Sym(5)x2 

Nr. 1-2 1-3 1-4 2-3 2-4 3-4 Cor(F, G) GojGjjG2IG3 
11 (1) 2 2 3 3 3 3 Sym(5)x2 S4, S4, S4, D12 
12 (1) 3 2 2 2 3 3 Sym(5)x2 2 S4, D12, S4, D12 
13 (1) 3 3 3 3 3 3 Sym(5) x Symn(4) S4, S4, S4, S4 
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4.6. Sym(5) x 2. 

Nr. 1-2 1-3 2-3 Cor(F, G) 
1-2 2 4 5 
3-8 2 4 6 

9-12 2 4 10 
13-14 2 5 6 
15-16 2 6 6 Sym(5) x 22 
17-18 2 6 6 Sym(5) x 2 
19-22 2 6 10 
23-24 3 4 4 Sym(5) x 22 
25-28 3 4 6 
29-30 3 6 6 Sym(5) x 22 

31-32 4 4 5 Sym(5) x 22 
33-34 4 4 6 Sym(5) x 2 
35-36 4 4 10 Sym(5) x 2 
37-40 4 5 6 
41-48 4 6 6 Sym(5) x 2 
49-52 4 6 10 
53-54 5 6 6 Sym(5) x 22 

55-56 6 6 10 Sym(5) x 2 

Nr. 1-2 1-3 1-4 2-3 2-4 3-4 Cor(F, G) Go,GjjG2jG3 
57-58 (1) 2 2 2 2 4 5 S5, D20, 2 x D8, 23 
59-60 (1) 2 2 2 2 4 6 S5, 22 x S3,2 x D8,23 
61-62 (1) 2 2 2 2 5 6 S5, 22 xS3, D20, 23 
63-64 (1) 2 2 2 2 6 6 Sy )x2 S5, 22 xS3, 22 XS3, 
65-66 (1) 2 2 2 3 4 4 Sym(5)x22 S5, 2 x D8, 2 x D8, D12 
67-70 (1) 2 2 2 3 4 6 S5, 22 x S3, 2 x D8, D12 
71-72 (1) 2 2 2 4 4 5 Sym(5)x22 S5, D20, 2 x D8, 2 x D8 
73-74 (1) 2 2 2 4 5 6 S5, 22 xS3, D20, 2xD8 
75-76 (1) 2 2 2 5 6 6 Sym(5)x22 S5, 22 x S3, 22 x S3, D20 
77-78 (1) 2 2 6 3 3 3 Sym(5)x22 S4, 2 x S4, 2 x S4, D12 
79-80 (1) 3 2 2 3 2 6 2 x S4, 2 x D12, D12, S4 

81 (1) 3 2 2 6 2 3 Sym(5)x22 2 x S4, D12, D12, 2 x S4 

Nr. 1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5 Cor(F, G) 
82-83 2 2 2 2 2 2 3 3 3 3 Sym(5) x 22 
84-85 2 2 2 2 3 3 3 3 3 3 Sym(5)x2xSym(4)| 
86-87 2 2 2 2 3 2 2 3 2 3 Sym(5) x 22 

The parabolic subgroups of geometries 82 to 87 can be guessed easily by looking 
at those of Sym(5). 
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4.7. PGL(2,7). 
Nr. 1-2 1-3 2-3 Cor(F, G) 

1 (1) 2 3 7 
2-3 (1) 2 3 8 
4 (1) 2 4 6 
5 (1) 2 4 7 

6-7 (1) 2 4 8 
8 (1) 2 6 6 PGL(2,7)x2 
9 (1) 2 6 7 

10-11 (1) 2 6 8 
12 (1) 2 7 7 PGL(2,7)x2 

13-14 (1) 2 7 8 
15-16 (1) 2 8 8 PGL(2,7)x2 

17 (1) 3 3 4 PGL(2,7)x2 
18 (1) 3 3 7 PGL(2,7)x2 

19-20 (1) 3 4 7 
21 (1) 3 6 6 PGL(2,7)x2 

22-24 (1) 3 6 8 
2.5-26 (1) 3 7 7 PGL(2,7) x2 
27-29 (1) 3 8 8 PGL (2,7)x 2 
30-31 (1) 3 8 8 PGL(2,7) 

32 (1) 4 4 4 PGL(2,7)xSym(3) 
33 (1) 4 4 7 PGL(2,7)x2 

34-35 (1) 4 6 6 PGL(2,7)x2 
36 (1) 4 6 8 

37-38 (1) 4 7 7 PGL(2,7)x2 
39 (1) 4 8 8 PGL(2,7)x2 

40-42 (1) 6 7 8 
43 (1) 7 7 7 PGL(2,7)xSym(3) 
44 (1) 7 8 8 PGL(2,7) 

4.8. Mlo. There is no thin, residually connected geometry on which M1o acts flag- 
transitively. 

5. APPLICATIONS 

The aim of this section is to show that building such an atlas may be useful, not 
only to make a collection of geometries, but also to find theorems and to solve open 
problems. The following theorems tend to show that for a given diagram, we can 
determine a lower bound on the order of a group G for it to act flag-transitively 
on the geometry corresponding to the diagram. Sometimes this lower bound is 
reached and we can see it by looking at our collection of geometries given in the 
two previous sections. This means we can say that such a group is (one of) the 
smallest group(s) acting regularly on such a diagram. Sometimes we can even prove 
that the group for which we have an example is the only one having this order. 

Theorem 2. The group Alt(5) is the smallest group that acts regularly on the 
following diagram: 

0 5 0 ~5 0_ 
1 1 1 

No N1 NT2 
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Proof. Looking at the diagram, we know that I G = No 10 = N1 4 = N2 10 = 206c. 
Thus No = 2 co. But No > 5 and so No > 6. So c > 3. This means that the 
order of G is at least 60. Looking at the thin geometries of Alt(5) given in section 
3.1, we see that geometry number 2 has the diagram we are looking at. Thus there 
exists a group G whose order is 60 and which acts regularly on this diagram. Now 
we still have to show that it is the only group of order 60 that does so. Looking at 
all the groups of order 60 (they are implemented in the computer algebra package 
MAGMA [13]), we find only four groups that have at least two subgroups isomorphic 
to D1o and one isomorphic to D4. They are Alt(5), D60, 6 x D1o and D6 x D1o. 
An exhaustive search of all the thin rank 3 geometries of these groups shows that 
Alt(5) is the only one to have a geometry with this diagram. C: 

Theorem 3. The group Alt(5) x 2 is the smallest group that acts regularly on the 
following diagram: 

0 3 0 10 0 

1 1 1 

No N1 N2 

Proof. Looking at the diagram, we know that C G = No 20 = N1 4 = N2 6 = 60 c. 
This means that the order of G is at least 60. There are only two groups of order 60 
which have subgroups isomorphic to D20, D4 and D6. They are D60 and D6 x D1o. 
Using our set of programs, it is easy to construct all the thin geometries on which 
these two groups act regularly. This shows us that neither of these two groups 
acts regularly on the diagram given above. Thus we can conclude that C G I > 60 
and hence C G I > 120. Then, looking at the geometries of Alt(5) x 2, we see that 
geometries 2 and 3 have the diagram we are looking for. We still have to show that 
it is the only group of order 120 that acts regularly on this diagram. To do so, we 
use the database of all small groups of order less than 1000 available in Gap [21]. 
There are 47 such groups. Eighteen of them have subgroups isomorphic to D4, D6 
and D20. We then use our set of programs to check that only one of these groups, 
namely, Alt(5) x 2, has such a thin geometry. D 

Theorem 4. The groups Alt(5) x 2 and Sym(5) are the smallest groups that act 
regularly on the following diagram: 

0 5 0 ~6 0 
1 1 1 

No N1 N2 

Proof. Looking at the diagram, we know that C G = No 12 = N1 4 = N2 10 = 60-c. 
Thus the order of G is at least 60. There are only two groups of order 60 which 
have subgroups isomorphic to D1o, D4 and D12. They are D60 and D6 x D1o. 
Using our set of programs, it is easy to construct all the thin geometries on which 
these two groups act regularly. This shows us that neither of these two groups acts 
regularly on the diagram given above. Thus we can conclude that C G I > 60 and 
hence C G I > 120. This diagram appears for geometries 5 and 6 of Alt(5) x 2 and 
3 of Sym(5). To check that thses are the only two groups acting regularly on that 
diagram, we do the same work as in the previous theorem. Out of the 47 groups 
of order 120, there are only 19 of them that have subgroups isomorphic to D4, DIo 
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and D12. Then we check with our programs that only Alt(5) x 2 and Sym(5) can 
act regularly on that diagram. D 

Theorem 5. The groups 2 x Sym(4) and D6 x D8 are the smallest groups that act 
regularly on the following diagram. The group P9N2 = 32: D8 appearing in [11] is 
the next one. 

46 

1 1 1 

No N1 N2 

Proof. Because No 12 = N1* 4 = N2 8 = I G 1, we know that CG 24 n where 
n is an integer. Also, the diagram tells us that No > 4. Thus, G 24 r n > 48. 
Looking at all the non-abelian groups of order 48, we get 12 groups that have 
subgroups isomorphic to D8, D4, and D12. Using our set of programs, we see that 
2 x Sym(4) and D6 x D8 are the only two groups that act regularly on the diagram 
given above. 

Now, by looking at geometry number 41 of M1l, we see that the residue of 32: D8 
has the diagram given above. And this 32: D8 is the primitive group appearing in 
[11] as group P9N2. Thus there exists a group of order 72 that acts regularly on 
this diagram. We still have to show that it is the only one. To do so, we look at 
all the non-abelian groups of order 72. There are 44 such groups. Only 11 of them 
have some of their subgroups isomorphic to D4, D8, and D12 which are the three 
parabolic subgroups of our geometry. We then construct all their thin geometries 
using our set of programs. And it turns out that no other group of order 72 has 
such a geometry. D 

Theorem 6. The group D1o x D1o is the smallest group that acts regularly on the 
following diagram. The group Alt(5) x 2 is the next one. 

5 10 

1 1 1 

No N1 N2 

Proof. Because No 20 = N1 .4 = N2 10 = I G 1, we know that C G 20 n where 
n is an integer. Also, the diagram tells us that N2 > 10. Thus, C G 20. n > 100. 
Looking at all the non-abelian groups of order 100, we get 4 groups that have 
subgroups isomorphic to D1o, D4, and D20. Using our set of programs, we see that 
D1o x D1o is the only one that acts regularly on the diagram given above. 

The next possible size for G is 120. Looking at the geometries obtained for 
Alt(5) x 2, we see that two of them, namely geometries number 7 and 8, have the 
corresponding diagram. Then, looking at all the groups of order 120, we know that 
13 of them have subgroups isomorphic to D4, D1o and D20. None of them, except 
Alt(5) x 2 acts regularly on the diagram given above. D 

Theorem 7. The group 

G ((1,18,23,9,16,21,7,14,29,5,12,27,3,20,25) 
(2,17, 24,10,15, 22,8,13, 30, 6,11, 28,4,19, 26), 
(1, 13)(2, 14)(3, 11)(4, 12)(5, 19)(6, 20)(7, 17)(8, 18)(9, 15) 
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of order 120 and of structure (5 x Alt(4)) 2, is the smallest group that acts regularly 
on the following diagram: 

C 4 O 15 

1 1 1 

No N t N2 

Proof. Because No 30 = N i 4 = N2 8= G 1, we know that I G 120 n, 
where n is an integer. While scanning all groups of order 120 having subgroups 
isomorphic to D4, D6 and D20, for the proof of Theorem 3, we found this group 
acting on the diagram given above. Looking at all the groups of order 120, we get 
12 groups that have subgroups isomorphic to D4, D8, and D30. Using our set of 
programs, we see that the group G given here is the only one that acts regularly 
on the diagram given above. D 

Theorem 8. The group D12 x D10 is the smallest group that acts regularly on the 
following diagram: 

6 10 

1 1 1 

No N1 N2 

Proof. Because No 20 = N1 4 = N2 12 G 1, we know that C G 60 n, 
where n is an integer. Also, we see that N2 > 10, which implies Gi > 120. 
While scanning all groups of order 120 having subgroups isomorphic to D4, D6 
and D20, for the proof of Theorem 3, we found this group acting on the diagram 
given above. Looking at all the groups of order 120, we get 29 groups that have 
subgroups isomorphic to D4, D12, and D20. Using our set of programs, we see that 
2 x D60 is the only one that acts regularly on the diagram given above. D 

6. THIN GEOMETRIES AND REFLEXIVE MAPS 

According to [17], a map is the decomposition of an unbounded surface into N2 
non-overlapping simply-connected regions called faces by N1 arcs called edges join- 
ing pairs of No points called vertices. An automorphism of a map is a permutation 
of its elements preserving the relations of incidence. The automorphisms clearly 
form a group, called the group of the map. A map is regular if its group contains 
two particular automorphisms: one, say R, which cyclically permutes the edges 
that are successive sides of one face, and another, say S, which cyclically permutes 
the successive edges meeting at one vertex of this face. A regular map is reflexive 
if there is an automorphism R1 of the group which interchanges the two vertices 
incident to a given edge without interchanging the two faces incident to it. Finally, 
a map is said to be of type {p, q} if p edges belong to a face and q to a vertex. 

Starting from a thin regular geometry whose diagram is linear, it is easy to 
construct a reflexive map. 
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Lemma 2. Let F(G; Go, Gi, G2) be a thin regular geometry of rank 3 over a linear 
diagram of the following type: 

1 1 1 

No N1t N2 

Go = D2q G1 = 22 G2= D2P 

Then F may be seen as a reflexive map M of type {p, q}. 

Proof. The left cosets of Go (resp. GI, G2) are the vertices (resp. edges, faces) of 
M. This map is clearly regular. When we fix an edge e and a face f incident to it, 
we take the residue of these two objects. It consists of the two vertices incident to 
the edge. The group stabilizing e and f is GI n G2, which is a cyclic group of order 
two. And it acts transitively on the two vertices. Thus the map is reflexive. D 

Now, starting from a regular map, it is easy to obtain a thin regular rank 3 
geometry. 

A string is a graph on a set I such that we can order I = {1, ... , n} so that the 
edges of the graph are {i,i + 1}, 1 < i < n. 

Lemma 3 ([1]). Let G be a group, I a finite set, and F = (Gi i E I) a family of 
subgroups of G. Assume: 

(i) for each subset J of I of corank at least 2, Gj = KGiu} i E I \ J), and 
(ii) the connected components of the graph of the diagram of F are strings. 

Then 
(1) G is flag-transitive on F. 
(2) F is residually connected. 

Lemma 4. Let M = {p, q} be a reflexive map, and let G be the group of the map. 
Then, there exists a regular geometry F(G; Go, CG, G2) over a linear diagram of the 
following type: 

O P O qO 
1 1 1 

No N1 N2 
Go = D2q G1 = 22 G2 = D2p 

Proof. We simply take a vertex v, an edge e and a face f that are pairwise incident. 
Then Go (resp. GC, G2) is the stabilizer of v (resp. e, f). Because M is a map, we 
have that F(G; Go CG, CG2) is a thin geometry, and because its diagram is linear, 
we know thanks to Lemma 3 that the group G acts flag-transitively on it. F 

7. PETRIE POLYGONS 

As in [17], 5.2, a Petrie polygon of a map is a "zig-zag" in which every two consec- 
utive sides, but no three, belong to a face. In [17], 8.6, a method to compute the di- 
ameter of the Petrie polygons of a given map M = {p, q} is shown. Roughly speak- 
ing, if F(G; Go, GC, G2) corresponds to the map {p, q}, then Go n GC =- {Id(G), a}, 
Go n G2 = {Id(G), b} and G1 n G2 = {Id(G), c}. The length of the Petrie polygon 
is then the order of the element a b. c, that is, the smallest integer r such that 
(a * b * C)r = Id(G). The map is then denoted {p, q},. And a new map can be 
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obtained by replacing the faces of the abstract polyhedron corresponding to the 
map, by the Petrie polygons. We then get a map {p, r}q, which is called the Petrial 
of M in [28]. In that paper, the authors mention that sometimes problems occur 
and that the Petrial might not be a polyhedron anymore. We now give an, example 
of such a situation. If we compute r for geometries 2 and 3 of Alt(5) x 2, we obtain 
5 and 10. The value 5 is correct, and we see that {3, 5}, {3, 10} and {5, 10} are 
maps appearing as geometries of Alt(5) x 2. But because {10, 10} does not appear 
as a flag-transitive geometry of Alt(5) x 2, we know that this value is not good. 

Group explanation. To construct the Petrial of a polyhedron, we take the three 
generators a, b and c, and we replace them by a c, b, and c. This gives a map of 
type {p, r} most of the time. But sometimes, the subgroup (a - c, b) n (b, c) is not of 
order two. Thus the geometry obtained is not thin anymore. This is what happens 
for geometry 3 of Alt(5) x 2. 

Geometric explanation. If we construct the incidence structure arising from 
geometry 3 of Alt(5) x 2, and if we try to construct the Petrie polygons of it, we 
see that there is always one vertex incident to four edges. Thus the Petrie polygons 
are not genuine polygons. They look locally as follows: 

TABLE 1. The maps obtained in this atlas 

Map Vertices Edges Faces Group Order Smallest? Reference 
{3,5}5 6 15 10 Alt(5) 60 Yes [17] 
{3, 7}9 36 126 84 PSL(2,8) 504 ? [17] 
{7, 7}9 36 126 36 PSL(2,8) 504 ? 
{9, 9}9 28 126 28 PSL(2,-8) 504 ? 
{5, 5}5 66 165 66 PSL(2, 11) 660 ? [17] 
{5,6}6 55 165 66 PSL(2, 11) 660 ? 
{3, 3}4 4 6 4 Sym(4) 24 Yes [17] 
{3, 5>10 12 30 20 Alt(5) x 2 120 Yes [17] 
{3, 10} 6 30 20 Alt(5) x 2 120 Yes 
{5, 5}6 12 30 12 Alt(5) x 2 120 Yes 
{5,6}_ 10 30 12 Alt(5) x 2 120 Yes 
{5, 10}_ 6 30 12 Alt(5) x 2 120 No 
{4,5}6 12 30 15 Sym(5) 120 Yes 
{6, 6}6 10 30 10 Sym(5) 120 ? 
{4, 5}6 24 60 30 Sym(5) x 2 240 No [17] 
{4,6}1o 20 60 30 Sym(5) x 2 240 ? 
{6, 6}o 20 60 20 Sym(5) x 2 240 ? 
{3, 7}8 24 84 56 PGL(2,7) 336 Yes [17] 
{3, 8}8 21 84 56 PGL(2, 7) 336 ? 
{4,6}8 28 84 42 PGL(2,7) 336 ? 
{4, 7}8 24 84 42 PGL(2, 7) 336 ? 
{6, 6}8 28 84 28 PGL(2,7) 336 ? 
{6, 7}7 24 84 28 PGL(2,7) 336 ? 
{8, 8}8 21 84 21 PGL(2,7) 336 ? 
{3,4}6 6 12 8 Sym(4) x 2 48 Yes [17] 
{4,6}_ 4 12 6 D6 x D8 48 Yes 
{5, 10}_ 5 25 10 D1o x D1o 100 Yes 
{4, 15} 4 30 15 See Th. 7 120 Yes _ 



1646 DIMITRI LEEMANS 

Then of course, if we replace the faces of geometry 3 of Alt(5) x 2 by these new 
faces, we do not have a polyhedron anymore. 

Now we can take all the geometries with a linear diagram listed in the previous 
sections and convert them into reflexive maps. We then obtain new maps, and some 
of them are the smallest ones. Table 1 (on the previous page) lists all the maps 
obtained here. We only give one of the two or six related maps. It is well known 
that {p,q}r, {q ,q{p} r,{p,r}q, p}q {q, r r}p and {r, q}p have the same group acting 
on them. And if the Petrial of a given map is not a map anymore, we write "-" 
instead of r. Then, there are two maps that have the same group acting. They are 
{p, q}_ and {q, p}_. We only mention one of them. 
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